Development and Validation of a Musculoskeletal Risk Questionnaire

DEVELOPMENT OF A SCALE TO MEASURE CONCERN ABOUT CANCER RISK

DETECTION OF PATIENTS AT HIGH RISK OF MEDICATION ERRORS: DEVELOPMENT AND VALIDATION OF AN ALGORITHM

DEVELOPMENT AND VALIDATION OF A MEASURE TO ASSESS RISK FOR EATING DISORDERS IN ELITE WOMEN ATHLETES

DEVELOPMENT AND VALIDATION OF A NEUROTOXICOLOGICAL TEST BATTERY FOR NEUROTOXICITY RISK ASSESSMENT

DEVELOPMENT AND VALIDATION OF THE TRAUMA RISK ADJUSTMENT MODEL (TRAM)

DEVELOPMENT AND VALIDATION OF CLINICAL RISK ASSESSMENT INSTRUMENTS

DEVELOPMENT AND VALIDATION OF NOVEL FOOD SAFETY RISK MANAGEMENT PRACTICES AND TECHNOLOGIES FROM FARM TO FORK

DEVELOPMENT AND VALIDATION OF A PSYCHOMETRIC INSTRUMENT FOR PREDICTING AIDS-RELATED RISK
Behavior Identification of Nutritional Risk in Children

The Development and Validation of Risk Assessment Tools for Non-diabetic Hyperglycaemia or Undiagnosed Diabetes

DESIGN CONTROLS, RISK MANAGEMENT & PROCESS VALIDATION FOR MEDICAL DEVICE PROFESSIONALS

Development and Validation of a Scale to Measure Concern about Cancer Risk

Detection of patients at high risk of medication errors: development and validation of an algorithm

current project thus examined current practice and policy in the
assessments, treatment, and management of juveniles with a history of sexual offending across multiple jurisdictions (Florida, New York, Oregon, Pennsylvania, and Virginia) and developed a prototype assessment tool, state-specific risk assessment models, and practical guidance for building a risk assessment for sexual recidivism in juvenile justice settings.

Development and Validation of Methods for Applying Pharmacokinetic Data in Risk Assessment

Mathematical Modelling of Low-speed Rear-end Impacts

The Development and Validation of Models for Assessing Risk Impacts on Construction Cash Flow Forecast

The second edition of this volume provides insight and practical illustrations on how modern statistical concepts and regression methods can be applied in medical prediction problems, including diagnostic and prognostic outcomes. Many advances have been made in statistical approaches towards outcome prediction, but a sensible strategy is needed for model development, validation, and updating, such that prediction models can better support medical practice. There is an increasing need for personalized evidence-based medicine that uses an individualized approach to medical decision-making. In this Big Data era, there is expanded access to large volumes of routinely collected data and an increased number of applications for prediction models, such as targeted early detection of disease and individualized approaches to diagnostic testing and treatment. Clinical Prediction Models presents a practical checklist that needs to be considered for development of a valid prediction model. Steps include preliminary considerations such as dealing with missing values; coding of predictors; selection of main effects and interactions for a multivariable model; estimation of model parameters with shrinkage methods and incorporation of external data; evaluation of performance and usefulness; internal validation; and presentation formatting. The text also addresses common issues that make prediction models suboptimal, such as
small sample sizes, exaggerated claims, and poor generalizability. The text is primarily intended for clinical epidemiologists and biostatisticians. Including many case studies and publicly available R code and data sets, the book is also appropriate as a textbook for a graduate course on predictive modeling in diagnosis and prognosis. While practical in nature, the book also provides a philosophical perspective on data analysis in medicine that goes beyond predictive modeling. Updates to this new and expanded edition include: • A discussion of Big Data and its implications for the design of prediction models • Machine learning issues • More simulations with missing ‘y’ values • Extended discussion on between-cohort heterogeneity • Description of ShinyApp • Updated LASSO illustration • New case studies

Risk Model Validation

Fundamentals of Clinical Data Science

Development and Validation of the Screening Test for at Risk Individuals for Eating Disorders (STARVED)

Prediction models are important in various fields, including medicine, physics, meteorology, and finance. Prediction models will become more relevant in the medical field with the increase in knowledge on potential predictors of outcome, e.g. from genetics. Also, the number of applications will increase, e.g. with targeted early detection of disease, and individualized approaches to diagnostic testing and treatment. The current era of evidence-based medicine asks for an individualized approach to medical decision-making. Evidence-based medicine has a central place for meta-analysis to summarize results from randomized controlled trials; similarly prediction models may summarize the effects of predictors to provide individu- ized predictions of a diagnostic or prognostic outcome. Why Read This Book? My motivation for working on this book stems primarily from the fact that the development and applications of prediction models are often suboptimal in medical publications. With this book I hope to contribute to better understanding of relevant issues and give practical advice on better
modelling strategies than are nowadays widely used. Issues include:
(a) Better predictive modelling is sometimes easily possible; e.g. a
large data set with high quality data is available, but all continuous
predictors are dich- omized, which is known to have several
disadvantages.

Development and Validation of an Actuarial Risk
Assessment Tool for Juveniles with a History of Sexual
Offending

Handbook of Analytical Quality by Design

The Development and Validation of the Adolescent
Domain Screening Inventory

Development and Validation of a Constipation Risk
Assessment Scale for Use in Clinical Practice

Development and Validation of a Risk Score Predicting
Substantial Weight Gain Over 5 Years in Middle-aged
European Men and Women

The Development and Validation of a Computerised
Expert System for Import Risk Analysis

Development and Validation of the Osteoporosis Risk
Assessment Tool for Thai Women 50 Years of Age and
Older Or with Menopause

Risk Prediction Modelling in Head and Neck Cancer
This open access book comprehensively covers the fundamentals of clinical data science, focusing on data collection, modelling and clinical applications. Topics covered in the first section on data collection include: data sources, data at scale (big data), data stewardship (FAIR data) and related privacy concerns. Aspects of predictive modelling using techniques such as classification, regression or clustering, and prediction model validation will be covered in the second section. The third section covers aspects of (mobile) clinical decision support systems, operational excellence and value-based healthcare. Fundamentals of Clinical Data Science is an essential resource for healthcare professionals and IT consultants intending to develop and refine their skills in personalized medicine, using solutions based on large datasets from electronic health records or telemonitoring programmes. The book’s promise is “no math, no code” and will explain the topics in a style that is optimized for a healthcare audience.

Development and Validation of a Measure to Assess Risk for Eating Disorders in Elite Women Athletes

This handbook provides the most up to date resource currently available for interpreting and understanding design controls. This handbook is the most exhaustive resource ever written about FDA & ISO 13485 design controls for medical devices with a collection of all applicable regulations and real-world examples. Four-hundred & forty, 8.5” X 11” pages provides an extensive evaluation of FDA 21 CFR 820 and is cross-referenced with ISO 13485 to provide readers with a broad and in-depth review of practical design control implementation techniques. This handbook also covers basic, intermediate and advanced design control topics and is an ideal resource for implementing new design control processes or upgrading an existing process into medical device quality systems. This critical resource also specifically outlines key topics which will allow quality managers and medical device developers to improve compliance quickly to pass internal and external audits and FDA inspections. The author breaks down the regulation line by line and provides a detailed interpretation by using supportive evidence from the FDA design control guidance and the quality systems preamble. Numerous examples, case studies, best practices, 70+ figures and 45+ tables provide practical implementation techniques which are
based on the author's extensive experience launching numerous medical device products and by integrating industry consultant expertise. In addition, bonus chapters include: explanation of medical device classification, compliance to design controls, risk management, and the design control quality system preamble. 20-40 pages are dedicated to each of the major design control topics: Design and Development Planning, Design Input, Design Output, Design Transfer, Design Verification, Design Validation, Design Change and Design History File.

Development and Validation of a Neurotoxicological Test Battery for Neurotoxicity Risk Assessment

Development and Validation of the Mechanical Restraint - Confounders, Risk, Alliance Score (MR - CRAS) Among Forensic Mental Health Clinicians

Development and Validation of the Trauma Risk Adjustment Model (TRAM).

Development and Validation of Clinical Risk Assessment Instruments

The Development and Validation of Novel Food Safety Risk Management Practices and Technologies from Farm to Fork

Development and Validation of a Psychometric Instrument for Predicting AIDS Related Risk Behavior

Identification of Nutritional Risk in Children
The Development and Validation of Risk Assessment Tools for Non-diabetic Hyperglycaemia Or Undiagnosed Diabetes

Risk-based Software Validation

Development and Validation of an Osteoporosis Risk Assessment Instrument (ORAI) to Select Women for Bone Densitometry

Development and Validation of a Postnatal Risk Score in Children with Prenatal Alcohol Exposure and Its Relation to Executive Function

"What is going to happen to me?" Most patients ask this question during a clinical encounter with a health professional. As well as learning what problem they have (diagnosis) and what needs to be done about it (treatment), patients want to know about their future health and wellbeing (prognosis). Prognosis research can provide answers to this question and satisfy the need for individuals to understand the possible outcomes of their condition, with and without treatment. Central to modern medical practice, the topic of prognosis is the basis of decision making in healthcare and policy development. It translates basic and clinical science into practical care for patients and populations. Prognosis Research in Healthcare: Concepts, Methods and Impact provides a comprehensive overview of the field of prognosis and prognosis research and gives a global perspective on how prognosis research and prognostic information can improve the outcomes of healthcare. It details how to design, carry out, analyse and report prognosis studies, and how prognostic information can be the basis for tailored, personalised healthcare. In particular, the book discusses how information about the characteristics of people, their health, and environment can be used to predict an individual's future health.
Prognosis Research in Healthcare: Concepts, Methods and Impact, addresses all types of prognosis research and provides a practical step-by-step guide to undertaking and interpreting prognosis research studies, ideal for medical students, health researchers, healthcare professionals and methodologists, as well as for guideline and policy makers in healthcare wishing to learn more about the field of prognosis.

Design and Validation of a Comprehensive Model for Risk-assessment in Product Development

Development and Validation of Risk Stratification Models in a Cohort of Community-living Homebound Older Adults, Comparison of Three Methods

The Development and Validation of a Domestic Abuse Risk Identification and Management Tool

Handbook of Analytical Quality by Design addresses the steps involved in analytical method development and validation in an effort to avoid quality crises in later stages. The AQbD approach significantly enhances method performance and robustness which are crucial during inter-laboratory studies and also affect the analytical lifecycle of the developed method. Sections cover sample preparation problems and the usefulness of the QbD concept involving Quality Risk Management (QRM), Design of Experiments (DoE) and Multivariate (MVT) Statistical Approaches to solve by optimizing the developed method, along with validation for different techniques like HPLC, UPLC, UFLC, LC-MS and electrophoresis. This will be an ideal resource for graduate students and professionals working in the pharmaceutical industry, analytical chemistry, regulatory agencies, and those in related academic fields. Concise language for easy understanding of the novel and holistic concept Covers key aspects of analytical development and validation Provides a robust, flexible, operable range for an analytical method with greater excellence and regulatory compliance
Development and Validation of a Risk Model for Identification of Non-neutropenic, Critically Ill Adult Patients at High Risk of Invasive Candida Infection

Development and Validation of Risk Stratification Indices for Cardiovascular Diseases: Addressing Racial Disparities in Mortality Rates Using Person-level Data from Four U.S. Cohorts

Risk stratification (RS) models make predictions of an outcome based on the observed information from predictor variables. Classification of a population into different groups based on their risk of an outcome provides the opportunity for delivering targeted services to each group based on their needs and priorities. Different RS tools have been developed for older adults, but there is a limited number of RS studies developed for use in community-living older adults. This dissertation aims to develop and validate risk stratification models in a cohort of community-living homebound older adults. The study population consisted of older homebound adults who received home-based medical services from the Visiting Physician Association (VPA), which is a part of the United States Medical Management (USMM) Corporation. USMM provides a range of services, including home-based primary care and medical visits, senior home care, palliative care, and hospice services. The cohort had several features indicative of high risk: the average age was 82 years, 50% had ≥ 5 comorbidities, and 45% had a severe disability (defined by a Karnofsky Performance Score KPS ≤ 40). The population had very high rates of mortality and hospice admission (1-year rates were 32% and 10%, respectively). Given the unique and high-risk nature of this population, a RS approach was developed to help to provide USMM patients with appropriate services aligned with their priorities, as guided by a recent conceptual framework for the care of older adults with multiple comorbidities (Table 1.2). We developed and validated prediction models for two outcomes (death and hospice admission) by using three alternate statistical approaches: logistic regression (LR), random forest (RF), and Cox regression. The performance of these models was compared using the discrimination ability measured by area under the receiver
operating curve (AUC). When developing the LR model we applied different variable selection methods (stepwise, backward, forward, adaptive lasso, elastic net, and manual). We developed a prediction model using a RF algorithm and used Cox regression to model time-to-event for each outcome separately (using the same variable selection methods as used in Logistic regression). All three models were developed in a derivation dataset (consisting of a random 50% of the cohort) and validated by applying to the validation dataset. Because of the large amount of missing data among predictor variables we applied multiple imputation (MI) procedures and compared the performance of LR and RF models in the original data and imputed data. For the prediction of mortality, all of the variable selection methods used in the LR model showed similar predictive performance (AUC 0.762-0.769). Random forest had the best discrimination ability (AUC=0.83), whereas the LR and Cox models had comparable AUCs (0.76 and 0.74 respectively). We determined that the higher AUC of the RF model was mainly due to its ability to include subjects with missing data because when the subjects with missing data were excluded from the RF cohort, the UAC of the model was similar to the LR model. Also when the RF model was applied to imputed data it has similar predictive performance as the LR model which indicated the basic assumption of multiple imputation (i.e., missing at random) was not met in this data. For hospice admission, all three models had a similar discriminative ability (AUC for RF, LR, and Cox, were 0.70, 0.73, and 0.72, respectively). The variables age, race, KPS, serum albumin, surprise question (SQ), and hyperlipidemia were consistently selected as the important predictors of both outcomes in all three approaches. WE concluded that the RF approach can significantly improve the predictive performance of the RS model but this advantage comes from its ability for the inclusion of observation with missing data. When data are missing not at random use of MI had a limited effect on improving the prediction of models because the basic assumption in MI procedure is missing at random. The quality of data from large electronic health record datasets remains a limitation of developing RS models.

Prognosis Research in Healthcare
Despite the well-documented teratogenic effects of prenatal alcohol exposure on executive functioning, the interaction of various risk factors on these effects has not been well studied. The current study aimed to address this issue by (1) developing a risk score model incorporating various risk factors known to exist among children with prenatal alcohol exposure in a development cohort and then validating this model in an independent validation cohort; (2) determining whether the risk score relates to performance on executive function measures. Subjects (N=661) aged 10-16 comprised two different samples: a development cohort (DC) and a validation cohort (VC). Within the DC, there were two groups of subjects: subjects with histories of heavy prenatal alcohol exposure (AE-DC, N=125) and a nonexposed comparison group (CON-DC, N=281). The VC also included exposed (AE-VC, N=74) and control (CON-VC, N=181) groups. In both cohorts, the non-exposed comparison groups consisted of non-exposed subjects with and without other behavioral conditions or concerns. Caregivers completed a questionnaire that provided developmental and familial history for each subject and the C-DISC-4.0. Measures were analyzed in the DC and validated in the VC using regression techniques to identify potential postnatal risk factors for prenatal alcohol exposure. In the VC, The BRIEF Parent Form, BRIEF Teacher Form, BRIEF Self-Rated Form, and performance on the D-KEFS were used in four different hierarchical regression analyses to determine if the relationship between risk score and executive function varied by group. A risk score model including postnatal risk factors was developed to accurately identify children with prenatal alcohol exposure. The subjects were divided into 3 subgroups based on their risk score (low-risk, intermediate-risk, high-risk) indicating the likelihood of prenatal alcohol exposure based on the risk factors. Higher risk scores related to poorer performance in executive
function measures. If exposure is unknown, the risk scores derived from the current study could help identify children who are at a high-risk of being alcohol-exposed and therefore, referred for further evaluation and interventions. The current study provides a new approach in examining postnatal risk factors in this population, as well as how postnatal risk factors can impact areas of cognition.

Clinical Prediction Models

Copyright code: c567f2a0f6752be7f734767e7074b61d