Foundations of Mathematics

Kurt Godel and the Foundations of Mathematics

A remarkable account of Kurt Gödel, weaving together creative genius, mental illness, political corruption, and idealism in the face of the turmoil of war and upheaval. At age 24, a brilliant Austrian-born mathematician published a mathematical result that shook the world. Nearly a hundred years after Kurt Gödel's famous 1931 paper "On Formally Undecidable Propositions" appeared, his proof that every mathematical system must contain propositions that are true - yet never provable within that system - continues to pose profound questions for mathematics, philosophy, computer science, and artificial intelligence. His close friend Albert Einstein, with whom he would walk home every day from Princeton's famous
Institute for Advanced Study, called him "the greatest logician since Aristotle." He was also a man who felt profoundly out of place in his time, rejecting the entire current of 20th century philosophical thought in his belief that mathematical truths existed independent of the human mind, and beset by personal demons of anxiety and paranoid delusions that would ultimately lead to his tragic end from self-starvation. Drawing on previously unpublished letters, diaries, and medical records, Journey to the Edge of Reason offers the most complete portrait yet of the life of one of the 20th century's greatest thinkers. Stephen Budiansky's account brings to life the remarkable world of philosophical and mathematical creativity of pre-war Vienna, and documents how it was barbarically extinguished by the Nazis. He charts Gödel's own hairbreadth escape from Nazi Germany to the scholarly idyll of Princeton; and the complex, gently humorous, sensitive, and tormented inner life of this iconic but previously enigmatic giant of modern science. Weaving together Gödel's public and private lives, this is a tale of creative genius, mental illness, political corruption, and idealism in the face of the turmoil of war and upheaval.

From Frege to Gödel A dazzling group biography of the early twentieth-century thinkers who transformed the way the world thought about math and science Inspired by Albert Einstein's theory of relativity and Bertrand Russell and David Hilbert's pursuit of the fundamental rules of mathematics, some of the most brilliant minds of the generation came together in post-World War I Vienna to present the latest theories in mathematics, science, and philosophy and to build a strong foundation for scientific investigation. Composed of such luminaries as Kurt Gö and Rudolf Carnap, and stimulated by the works of Ludwig Wittgenstein and Karl Popper, the Vienna Circle left an indelible mark on science. Exact Thinking in Demented Times tells the often outrageous, sometimes tragic, and never boring stories of the men who transformed scientific thought. A revealing work of history, this landmark book pays tribute to those who dared to reinvent knowledge from the ground up.

Kurt Gödel: Collected Works: Volume I A portrait of the eminent twentieth-century mathematician discusses his theorem of incompleteness, relationships with such contemporaries as Albert Einstein, and untimely death as a result of mental instability and self-starvation.
Principia Mathematica Dr. KURT GODEL'S sixtieth birthday (April 28, 1966) and the thirty fifth anniversary of the publication of his theorems on undecidability were celebrated during the 75th Anniversary Meeting of the Ohio Academy of Science at The Ohio State University, Columbus, on April 22, 1966. The celebration took the form of a Festschrift Symposium on a theme supported by the late Director of The Institute for Advanced Study at Princeton, New Jersey, Dr. J. ROBERT OPPENHEIMER: "Logic, and Its Relations to Mathematics, Natural Science, and Philosophy." The symposium also celebrated the founding of Section L (Mathematical Sciences) of the Ohio Academy of Science. Salutations to Dr. GODEL were followed by the reading of papers by S. F. BARKER, H. B. CURRY, H. RUBIN, G. E. SACKS, and G. TAKEUTI, and by the announcement of in-absentia papers contributed in honor of Dr. GODEL by A. LEVY, B. MELTZER, R. M. SOLOVAY, and E. WETTE. A short discussion of "The II Beyond Godel's I" concluded the session.

Goedel's Way This book on proof theory centers around the legacy of Kurt Schütte and its current impact on the subject. Schütte was the last doctoral student of David Hilbert who was the first to see that proofs can be viewed as structured mathematical objects amenable to investigation by mathematical methods (metamathematics). Schütte inaugurated the important paradigm shift from finite proofs to infinite proofs and developed the mathematical tools for their analysis. Infinitary proof theory flourished in his hands in the 1960s, culminating in the famous bound Γ_0 for the limit of predicative mathematics (a fame shared with Feferman). Later his interests shifted to developing infinite proof calculi for impredicative theories. Schütte had a keen interest in advancing ordinal analysis to ever stronger theories and was still working on some of the strongest systems in his eighties. The articles in this volume from leading experts close to his research, show the enduring influence of his work in modern proof theory. They range from eye witness accounts of his scientific life to developments at the current research frontier, including papers by Schütte himself that have never been published before.

Bemerkungen Über Die Grundlagen Der Mathematik Richard Tieszen analyzes, develops, and defends the writings of Kurt Gödel (1906-1978) on the philosophy and foundations of mathematics and logic. Gödel's relation to the work of Plato, Leibniz, Husserl, and Kant is examined, and a new type of platonic
rationalism that requires rational intuition, called 'constituted platonism', is proposed.

Incompleteness: The Proof and Paradox of Kurt Gödel (Great Discoveries)

Gödel '96 This volume commemorates the life, work and foundational views of Kurt Gödel (1906-1978), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.

Foundations of Mathematics; Symposium Papers Commemorating the Sixtieth Birthday of Kurt Gödel. Edited by Jack J. Bulloff, Thomas C. Holyoke (And) S.W. Hahn Kurt Gödel, together with Bertrand Russell, is the most important name in logic, and in the foundations and philosophy of mathematics of this century. However, unlike Russel, Gödel the mathematician published very little apart from his well-known writings in logic, metamathematics and set theory. Fortunately, Gödel the philosopher, who devoted more years of his life to philosophy than to technical investigation, wrote hundreds of pages on the philosophy of mathematics, as well as on other fields of philosophy. It was only possible to learn more about his philosophical works after the opening of his literary estate at Princeton a decade ago. The goal of this book is to make available to the scholarly public solid reconstructions and editions of two of the most important essays which Gödel wrote on the philosophy of mathematics. The book is divided into two parts. The first provides the reader with an incisive historico-philosophical introduction to Gödel's technical results and philosophical ideas. Written by the Editor, this introductory apparatus is not only devoted to the manuscripts themselves but also to the philosophical context in which they were written. The second contains two of Gödel's most important and fascinating unpublished essays: 1) the Gibbs Lecture ("Some basic theorems on the foundations of mathematics and their philosophical implications")
Kurt Gödel and the Foundations of Mathematics

Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century, famous for his hallmark works on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computability theory, as well as for the strong individuality of his writings on the philosophy of mathematics. He is less well known for his discovery of unusual cosmological models for Einstein's equations, in theory permitting time travel into the past. The Collected Works is a landmark resource that draws together a lifetime of creative thought and accomplishment. The first two volumes were devoted to Gödel's publications in full (both in original and translation), and the third volume featured a wide selection of unpublished articles and lecture texts found in Gödel's Nachlass. These long-awaited final two volumes contain Gödel's correspondence of logical, philosophical, and scientific interest. Volume IV covers A to G, with H to Z in volume V; in addition, Volume V contains a full inventory of Gödel's Nachlass. All volumes include introductory notes that provide extensive explanatory and historical commentary on each body of work, English translations of material originally written in German (some transcribed from the Gabelsberger shorthand), and a complete bibliography of all works cited. Kurt Gödel: Collected Works is designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy. The only comprehensive edition of Gödel's work available, it will be an essential part of the working library of professionals and students in logic, mathematics, philosophy, history of science, and computer science and all others who wish to be acquainted with one of the great minds of the twentieth century.

After Gödel The logician Kurt Godel in 1951 established a disjunctive thesis about the scope and limits of mathematical knowledge: either the mathematical mind is not equivalent to a Turing machine (i.e., a computer), or there are absolutely undecidable mathematical problems. In the second half of the twentieth century, attempts have been made to arrive at a stronger conclusion. In particular, arguments have been produced by the philosopher J.R. Lucas and by the physicist and mathematician Roger Penrose that intend to show that the mathematical mind is more powerful than any computer. These arguments, and counterarguments to them, have not convinced the logical and philosophical
community. The reason for this is an insufficiency if rigour in the debate. The contributions in this volume move the debate forward by formulating rigorous frameworks and formally spelling out and evaluating arguments that bear on Godel's disjunction in these frameworks. The contributions in this volume have been written by world leading experts in the field.

Godel's Disjunction The Logical Foundations of Mathematics offers a study of the foundations of mathematics, stressing comparisons between and critical analyses of the major non-constructive foundational systems. The position of constructivism within the spectrum of foundational philosophies is discussed, along with the exact relationship between topos theory and set theory. Comprised of eight chapters, this book begins with an introduction to first-order logic. In particular, two complete systems of axioms and rules for the first-order predicate calculus are given, one for efficiency in proving metatheorems, and the other, in a "natural deduction" style, for presenting detailed formal proofs. A somewhat novel feature of this framework is a full semantic and syntactic treatment of variable-binding term operators as primitive symbols of logic. Subsequent chapters focus on the origin of modern foundational studies; Gottlob Frege's formal system intended to serve as a foundation for mathematics and its paradoxes; the theory of types; and the Zermelo-Fraenkel set theory. David Hilbert's program and Kurt Gödel's incompleteness theorems are also examined, along with the foundational systems of W. V. Quine and the relevance of categorical algebra for foundations. This monograph will be of interest to students, teachers, practitioners, and researchers in mathematics.

The Foundations of Computability Theory 'What is a self and how can a self come out of inanimate matter?' This is the riddle that drove Douglas Hofstadter to write this extraordinary book. In order to impart his original and personal view on the core mystery of human existence - our intangible sensation of 'I'-ness - Hofstadter defines the playful yet seemingly paradoxical notion of 'strange loop', and explicates this idea using analogies from many disciplines.

Kurt Gödel: Collected Works: Volume III "This volume commemorates the life, work, and foundational views of Kurt Gödel (1906-1978), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances, and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology, and the
history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy, and other disciplines for future generations of researchers"--

Kurt Gödel: Collected Works: Volume III

Journey to the Edge of Reason The first book to present a readable explanation of Godel's theorem to both scholars and non-specialists, this is a gripping combination of science and accessibility, offering those with a taste for logic and philosophy the chance to satisfy their intellectual curiosity.

Logical Dilemmas Kurt Gödel was the greatest logician of this century. This third volume of his collected works consists of previously unpublished material, both essays and lectures.

Gödel, Escher, Bach

Gödel '96 This volume covers the period from the beginning of Whitehead and Russell's work on Volume 2 of the Principles of Mathematics to the critical discovery of the theory of descriptions in 1905. Contains many previously unpublished manuscripts.

Foundations of Mathematics and other Logical Essays "Among the many expositions of Gödel's incompleteness theorems written for non-specialists, this book stands apart. With exceptional clarity, Franzén gives careful, non-technical explanations both of what those theorems say and, more importantly, what they do not. No other book aims, as his does, to address in detail the misunderstandings and abuses of the incompleteness theorems that are so rife in popular discussions of their significance. As an antidote to the many spurious appeals to incompleteness in theological, anti-mechanist and post-modernist debates, it is a valuable addition to the literature." --- John W. Dawson, author of Logical Dilemmas: The Life and Work of Kurt Gödel

When Einstein Walked with Gödel From Jim Holt, the New York Times bestselling author of Why Does the World Exist?, comes an entertaining and accessible guide to the most profound scientific and mathematical ideas of recent centuries in When Einstein Walked with Gödel: Excursions to the Edge of
Thought. Does time exist? What is infinity? Why do mirrors reverse left and right but not up and down? In this scintillating collection, Holt explores the human mind, the cosmos, and the thinkers who’ve tried to encompass the latter with the former. With his trademark clarity and humor, Holt probes the mysteries of quantum mechanics, the quest for the foundations of mathematics, and the nature of logic and truth. Along the way, he offers intimate biographical sketches of celebrated and neglected thinkers, from the physicist Emmy Noether to the computing pioneer Alan Turing and the discoverer of fractals, Benoit Mandelbrot. Holt offers a painless and playful introduction to many of our most beautiful but least understood ideas, from Einsteinian relativity to string theory, and also invites us to consider why the greatest logician of the twentieth century believed the U.S. Constitution contained a terrible contradiction—and whether the universe truly has a future.

Publications 1929-1936 Kurt Gödel (1906–1978) did groundbreaking work that transformed logic and other important aspects of our understanding of mathematics, especially his proof of the incompleteness of formalized arithmetic. This book on different aspects of his work and on subjects in which his ideas have contemporary resonance includes papers from a May 2006 symposium celebrating Gödel’s centennial as well as papers from a 2004 symposium. Proof theory, set theory, philosophy of mathematics, and the editing of Gödel's writings are among the topics covered. Several chapters discuss his intellectual development and his relation to predecessors and contemporaries such as Hilbert, Carnap, and Herbrand. Others consider his views on justification in set theory in light of more recent work and contemporary echoes of his incompleteness theorems and the concept of constructible sets.

Foundations of Logic, 1903-05 This authoritative biography of Kurt Goedel relates the life of this most important logician of our time to the development of the field. Goedel's seminal achievements that changed the perception and foundations of mathematics are explained in the context of his life from the turn of the century Austria to the Institute for Advanced Study in Princeton.

Godel's Proof Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century, famous for his hallmark works on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computability theory, as well as for the strong individuality of his writings on the philosophy of mathematics. He is less well known for his discovery of unusual cosmological
models for Einstein's equations, in theory permitting time travel into the past. The Collected Works is a landmark resource that draws together a lifetime of creative thought and accomplishment. The first two volumes were devoted to Gödel's publications in full (both in original and translation), and the third volume featured a wide selection of unpublished articles and lecture texts found in Gödel's Nachlass. These long-awaited final two volumes contain Gödel's correspondence of logical, philosophical, and scientific interest. Volume IV covers A to G, with H to Z in volume V; in addition, Volume V contains a full inventory of Gödel's Nachlass. All volumes include introductory notes that provide extensive explanatory and historical commentary on each body of work, English translations of material originally written in German (some transcribed from the Gabelsberger shorthand), and a complete bibliography of all works cited. Kurt Gödel: Collected Works is designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy. The only comprehensive edition of Gödel's work available, it will be an essential part of the working library of professionals and students in logic, mathematics, philosophy, history of science, and computer science and all others who wish to be acquainted with one of the great minds of the twentieth century.

Kurt Gödel

The Legacy of Kurt Schütte This volume commemorates the life, work and foundational views of Kurt Gödel (1906–78), most famous for his hallmark works on the completeness of first-order logic, the incompleteness of number theory, and the consistency - with the other widely accepted axioms of set theory - of the axiom of choice and of the generalized continuum hypothesis. It explores current research, advances and ideas for future directions not only in the foundations of mathematics and logic, but also in the fields of computer science, artificial intelligence, physics, cosmology, philosophy, theology and the history of science. The discussion is supplemented by personal reflections from several scholars who knew Gödel personally, providing some interesting insights into his life. By putting his ideas and life's work into the context of current thinking and perceptions, this book will extend the impact of Gödel's fundamental work in mathematics, logic, philosophy and other disciplines for future generations of researchers.

Gödel's Theorem Since their inception, the Perspectives in Logic and Lecture
Notes in Logic series have published seminal works by leading logicians. Many of the original books in the series have been unavailable for years, but they are now in print once again. This volume, the sixth publication in the Lecture Notes in Logic series, collects the proceedings of the conference 'Logical Foundations of Mathematics, Computer Science, and Physics - Kurt Gödel's Legacy', held in Brno, Czech Republic, on the 90th anniversary of Gödel's birth. The broad range of speakers who participated in this event affirms the continuing importance of Gödel's work in logic, physics, and the philosophy and foundations of mathematics and computer science. The papers in this volume range over all these topics and contribute to our present understanding of them.

Kurt Gödel: Collected Works: Kurt Gödel (1906 - 1978) was the most outstanding logician of the twentieth century, famous for his hallmark works on the completeness of logic, the incompleteness of number theory, and the consistency of the axiom of choice and the continuum hypothesis. He is also noted for his work on constructivity, the decision problem, and the foundations of computability theory, as well as for the strong individuality of his writings on the philosophy of mathematics. He is less well known for his discovery of unusual cosmological models for Einstein's equations, in theory permitting time travel into the past. The Collected Works is a landmark resource that draws together a lifetime of creative thought and accomplishment. The first two volumes were devoted to Gödel's publications in full (both in original and translation), and the third volume featured a wide selection of unpublished articles and lecture texts found in Gödel's Nachlass. These long-awaited final two volumes contain Gödel's correspondence of logical, philosophical, and scientific interest. Volume IV covers A to G, with H to Z in volume V; in addition, Volume V contains a full inventory of Gödel's Nachlass. All volumes include introductory notes that provide extensive explanatory and historical commentary on each body of work, English translations of material originally written in German (some transcribed from the Gabelsberger shorthand), and a complete bibliography of all works cited. Kurt Gödel: Collected Works is designed to be useful and accessible to as wide an audience as possible without sacrificing scientific or historical accuracy. The only comprehensive edition of Gödel's work available, it will be an essential part of the working library of professionals and students in logic, mathematics, philosophy, history of science, and computer science and all others who wish to be acquainted with one of the great minds of the twentieth century.

Exact Thinking in Demented Times The fundamental texts of the great classical period in modern logic, some of them never before available in English
translation, are here gathered together for the first time. Modern logic, heralded by Leibniz, may be said to have been initiated by Boole, De Morgan, and Jevons, but it was the publication in 1879 of Gottlob Frege’s Begriffsschrift that opened a great epoch in the history of logic by presenting, in full-fledged form, the propositional calculus and quantification theory. Frege’s book, translated in its entirety, begins the present volume. The emergence of two new fields, set theory and foundations of mathematics, on the borders of logic, mathematics, and philosophy, is depicted by the texts that follow. Peano and Dedekind illustrate the trend that led to Principia Mathematica. Burali-Forti, Cantor, Russell, Richard, and König mark the appearance of the modern paradoxes. Hilbert, Russell, and Zermelo show various ways of overcoming these paradoxes and initiate, respectively, proof theory, the theory of types, and axiomatic set theory. Skolem generalizes Löwenheim’s theorem, and he and Fraenkel amend Zermelo’s axiomatization of set theory, while von Neumann offers a somewhat different system. The controversy between Hubert and Brouwer during the twenties is presented in papers of theirs and in others by Weyl, Bernays, Ackermann, and Kolmogorov. The volume concludes with papers by Herbrand and by Gödel, including the latter’s famous incompleteness paper. Of the forty-five contributions here collected all but five are presented in extenso. Those not originally written in English have been translated with exemplary care and exactness; the translators are themselves mathematical logicians as well as skilled interpreters of sometimes obscure texts. Each paper is introduced by a note that sets it in perspective, explains its importance, and points out difficulties in interpretation. Editorial comments and footnotes are interpolated where needed, and an extensive bibliography is included.

The Logical Foundations of Mathematics This book offers an original and informative view of the development of fundamental concepts of computability theory. The treatment is put into historical context, emphasizing the motivation for ideas as well as their logical and formal development. In Part I the author introduces computability theory, with chapters on the foundational crisis of mathematics in the early twentieth century, and formalism. In Part II he explains classical computability theory, with chapters on the quest for formalization, the Turing Machine, and early successes such as defining incomputable problems, c.e. (computably enumerable) sets, and developing methods for proving incomputability. In Part III he explains relative computability, with chapters on computation with external help, degrees of unsolvability, the Turing hierarchy of unsolvability, the class of degrees of unsolvability, c.e. degrees and the priority method, and the arithmetical hierarchy. Finally, in the new Part IV the author revisits the computability
Read Free Kurt Godel And The Foundations Of Mathematics

(Church-Turing) thesis in greater detail. He offers a systematic and detailed account of its origins, evolution, and meaning, he describes more powerful, modern versions of the thesis, and he discusses recent speculative proposals for new computing paradigms such as hypercomputing. This is a gentle introduction from the origins of computability theory up to current research, and it will be of value as a textbook and guide for advanced undergraduate and graduate students and researchers in the domains of computability theory and theoretical computer science. This new edition is completely revised, with almost one hundred pages of new material. In particular the author applied more up-to-date, more consistent terminology, and he addressed some notational redundancies and minor errors. He developed a glossary relating to computability theory, expanded the bibliographic references with new entries, and added the new part described above and other new sections.

A World Without Time Richard Tieszen presents an analysis, development, and defense of a number of central ideas in Kurt Gödel's writings on the philosophy and foundations of mathematics and logic. Tieszen structures the argument around Gödel's three philosophical heroes - Plato, Leibniz, and Husserl - and his engagement with Kant, and supplements close readings of Gödel's texts on foundations with materials from Gödel's Nachlass and from Hao Wang's discussions with Gödel. As well as providing discussions of Gödel's views on the philosophical significance of his technical results on completeness, incompleteness, undecidability, consistency proofs, speed-up theorems, and independence proofs, Tieszen furnishes a detailed analysis of Gödel's critique of Hilbert and Carnap, and of his subsequent turn to Husserl's transcendental philosophy in 1959. On this basis, a new type of platonic rationalism that requires rational intuition, called 'constituted platonism', is developed and defended. Tieszen shows how constituted platonism addresses the problem of the objectivity of mathematics and of the knowledge of abstract mathematical objects. Finally, he considers the implications of this position for the claim that human minds ('monads') are machines, and discusses the issues of pragmatic holism and rationalism.

Space, Time and the Limits of Human Understanding In this compendium of essays, some of the world’s leading thinkers discuss their conceptions of space and time, as viewed through the lens of their own discipline. With an epilogue on the limits of human understanding, this volume hosts contributions from six or more diverse fields. It presumes only rudimentary background knowledge on the part of the reader. Time and again, through the prism of intellect, humans have tried to diffract reality into various distinct, yet seamless, atomic, yet
holistic, independent, yet interrelated disciplines and have attempted to study it contextually. Philosophers debate the paradoxes, or engage in meditations, dialogues and reflections on the content and nature of space and time. Physicists, too, have been trying to mold space and time to fit their notions concerning micro- and macro-worlds. Mathematicians focus on the abstract aspects of space, time and measurement. While cognitive scientists ponder over the perceptual and experiential facets of our consciousness of space and time, computer scientists theoretically and practically try to optimize the space-time complexities in storing and retrieving data/information. The list is never-ending. Linguists, logicians, artists, evolutionary biologists, geographers etc., all are trying to weave a web of understanding around the same duo. However, our endeavour into a world of such endless imagination is restrained by intellectual dilemmas such as: Can humans comprehend everything? Are there any limits? Can finite thought fathom infinity? We have sought far and wide among the best minds to furnish articles that provide an overview of the above topics. We hope that, through this journey, a symphony of patterns and tapestry of intuitions will emerge, providing the reader with insights into the questions: What is Space? What is Time? Chapter [15] of this book is available open access under a CC BY 4.0 license.

Logic, Logic, and Logic George Boolos was one of the most prominent and influential logician-philosophers of recent times. This collection, nearly all chosen by Boolos himself shortly before his death, includes thirty papers on set theory, second-order logic, and plural quantifiers; on Frege, Dedekind, Cantor, and Russell; and on miscellaneous topics in logic and proof theory, including three papers on various aspects of the Gödel theorems. Boolos is universally recognized as the leader in the renewed interest in studies of Frege's work on logic and the philosophy of mathematics. John Burgess has provided introductions to each of the three parts of the volume, and also an afterword on Boolos's technical work in provability logic, which is beyond the scope of this volume.

Kurt Gödel A remarkable account of the brilliant, troubled mathematician and philosopher Kurt Gödel. From his famous Incompleteness Theorem, which shook the foundations of mathematical truth, to his perilous escape from Nazi Vienna, this book weaves together his creative genius, mental illness, and idealism in the face of adversity.

Foundations of mathematics: symposium papers commemorating the sixtieth birthday of Kurt Godel, ed In 1942, the logician Kurt Godel and Albert Einstein
became close friends; they walked to and from their offices every day, exchanging ideas about science, philosophy, politics, and the lost world of German science. By 1949, Gödel had produced a remarkable proof: In any universe described by the Theory of Relativity, time cannot exist. Einstein endorsed this result reluctantly but he could find no way to refute it, since then, neither has anyone else. Yet cosmologists and philosophers alike have proceeded as if this discovery was never made. In A World Without Time, Palle Yourgrau sets out to restore Gödel to his rightful place in history, telling the story of two magnificent minds put on the shelf by the scientific fashions of their day, and attempts to rescue the brilliant work they did together.

After Gödel Kurt Gödel (1906-1978) was an Austrian-American mathematician, who is best known for his incompleteness theorems. He was the greatest mathematical logician of the 20th century, with his contributions extending to Einstein's general relativity, as he proved that Einstein's theory allows for time machines. The Gödel incompleteness theorem - the usual formal mathematical systems cannot prove nor disprove all true mathematical sentences - is frequently presented in textbooks as something that happens in the rarefied realms of mathematical logic, and that has nothing to do with the real world. Practice shows the contrary though; one can demonstrate the validity of the phenomenon in various areas, ranging from chaos theory and physics to economics and even ecology. In this lively treatise, based on Chaitin’s groundbreaking work and on the da Costa-Doria results in physics, ecology, economics and computer science, the authors show that the Gödel incompleteness phenomenon can directly bear on the practice of science and perhaps on our everyday life. This accessible book gives a new, detailed and elementary explanation of the Gödel incompleteness theorems and presents the Chaitin results and their relation to the da Costa-Doria results, which are given in full, but with no technicalities. Besides theory, the historical report and personal stories about the main character and on this book’s writing process, make it appealing leisure reading for those interested in mathematics, logic, physics, philosophy and computer sciences. See also: http://www.youtube.com/watch?v=REy9noY5Sg8

Copyright code : 26e923f171d03c6638e845e7cf96cea7