The Reliability Handbook

This book is about various adaptive and dynamic techniques used to optimize processor power and performance. It is based on a very successful forum at ISSCC which focused on Adaptive Techniques. The book looks at the underlying process technology for adaptive designs and then examines different circuits, architecture and software that address the different aspects. The chapters are written by people both in academia and the industry to show the scope of alternative practices.

The Reliability Handbook

With the fast advancement of CMOS fabrication technology, more and more signal-processing functions are implemented in the digital domain for a lower cost, lower power consumption, higher yield, and higher re-configurability. This has recently generated a great demand for low-power, low-voltage A/D converters that can be realized in a mainstream deep-submicron CMOS technology. However, the discrepancies between lithography wavelengths and circuit feature sizes are increasing. Lower power supply voltages significantly reduce noise margins and increase variations in process, device and design parameters. Consequently, it is steadily more difficult to control the fabrication process precisely enough to maintain uniformity. The inherent randomness of materials used in fabrication at nanoscopic scales means that performance will be increasingly variable, not only from die-to-die but also within each individual die. Parametric variability will be compounded by degradation in nanoscale integrated circuits resulting in instability of parameters over time, eventually leading to the development of faults. Process variation cannot be solved by improving manufacturing tolerances; variability must be reduced by new device technology or managed by design in order for scaling to continue. Similarly, within-die performance variation also imposes new challenges for test methods. In an attempt to address these issues, Low-Power High-Resolution Analog-to-Digital Converters specifically focus on: i) improving the power efficiency for the high-speed, and low spurious spectral A/D conversion performance by exploring the potential of low-voltage analog design and calibration techniques, respectively, and ii) development of circuit techniques and algorithms to enhance testing and debugging potential to detect errors dynamically, to isolate and confine faults, and to recover errors continuously.

The feasibility of the described methods has been verified by measurements from the silicon prototypes fabricated in standard 180nm, 90nm and 65nm CMOS technology.

Practical Pharmaceutical Laboratory Automation Laboratory automation is an increasingly important part of the job description of many laboratory scientists. Although many laboratory scientists understand the methods and principles involved in automation, most lack the necessary engineering and programming skills needed to successfully automate or interface equipment in the lab. A step-by-step, how-to reference
and guide, Practical Pharmaceutical Laboratory Automation explores the processes needed to automate the majority of tasks required in research today. The author discusses topics ranging from automated mathematical analysis to robotic automation of chemical processes, to combinations of these and other processes. He presents a detailed discussion of high throughput screening and assay development and takes an in-depth look at Visual Basic as the primary programming language used in laboratories. The text has a dedicated web site (http://www.pharmalabauto.com) that contains all the sample code and examples contained within the text as well as other information related to laboratory automation. Providing a starting point for tackling automation problems, Practical Pharmaceutical Laboratory Automation helps you develop a strategy for automation that gets consistent results.

Biopotential Readout Circuits for Portable Acquisition Systems This book provides a methodological understanding of the theoretical and technical limitations to the longevity of Moore’s law. The book presents research on factors that have significant impact on the future of Moore’s law and those factors believed to sustain the trend of the last five decades. Research findings show that boundaries of Moore’s law primarily include physical restrictions of scaling electronic components to levels beyond that of ordinary manufacturing principles and approaching the bounds of physics. The research presented in this book provides essential background and knowledge to grasp the following principles: Traditional and modern photolithography, the primary limiting factor of Moore’s law Innovations in semiconductor manufacturing that makes current generation CMOS processing possible Multi-disciplinary technologies that could drive Moore’s law forward significantly Design principles for microelectronic circuits and components that take advantage of technology miniaturization The semiconductor industry economic market trends and technical driving factors The complexity and cost associated with technology scaling have compelled researchers in the disciplines of engineering and physics to optimize previous generation nodes to improve system-on-chip performance. This is especially relevant to participate in the increased attractiveness of the Internet of Things (IoT). This book additionally provides scholarly and practical examples of principles in microelectronic circuit design and layout to mitigate technology limits of previous generation nodes. Readers are encouraged to intellectually apply the knowledge derived from this book to further research and innovation in prolonging Moore’s law and associated principles.

Analog Circuit Design Techniques at 0.5V The book will address the-state-of-the-art in integrated circuit design in the context of emerging systems. New exciting opportunities in body area networks, wireless communications, data networking, and optical imaging are discussed. Emerging materials that can take system performance beyond standard CMOS, like Silicon on Insulator (SOI), Silicon Germanium (SiGe), and Indium Phosphide (InP) are explored. Three-dimensional (3-D) CMOS integration and co-integration with sensor technology are described as well. The book is a must for anyone serious about circuit design for future technologies. The book is written by top-notch international experts in industry and academia. The intended audience is practicing engineers with integrated circuit background. The book will be also used as a recommended reading and supplementary material in graduate course curriculum. Intended audience is professionals working in the integrated circuit design field. Their job titles might be: design engineer, product manager, marketing manager, design team leader, etc. The book will be also used by graduate students. Many of the chapter authors are University Professors.

Temperature- and Supply Voltage-Independent Time References for Wireless Sensor Networks High-speed, power-efficient analog integrated circuits can be used as standalone devices or to interface modern digital signal processors and micro-controllers in various applications, including multimedia, communication, instrumentation, and control systems. New architectures and low device geometry of complementary metal-oxi-de-semiconductor (CMOS) technologies have accelerated the movement toward system on a chip design, which merges analog circuits with digital, and radio-frequency components.

Sensors and Signal Conditioning Basic Electronics and Devices is designed specifically to cater to the needs of students of B. Tech. in Electrical and Electronics Engineering. The book has a perfect blend of focused content and complete coverage. Lucid text with several solved examples, circuit diagrams and adequate questions elucidate the fundamentals of electronics Salient Features: - Comprehensive syllabus coverage - An easy-to-understand text using tutorial approach - Rich pool of pedagogy – solved examples, exercise questions, objective type questions

Fully-Depleted SOI CMOS Circuits and Technology for Ultralow-Power Applications This book constitutes the refereed proceedings of the 22st International Symposium on VLSI Design and Test, VDAT 2018, held in Madurai, India, in June 2018. The 39 full papers and 11 short papers presented together with 8 poster papers were carefully reviewed and selected from 231 submissions. The papers are organized in topical
sections named: digital design; analog and mixed signal design; hardware security; micro bio-fluidics; VLSI testing; analog circuits and devices; network-on-chip; memory; quantum computing and NoC; sensors and interfaces.

Advanced Circuits for Emerging Technologies CMOS Data Converters for Communications distinguishes itself from other data converter books by emphasizing system-related aspects of the design and frequency-domain measures. It explains in detail how to derive data converter requirements for a given communication system (baseband, passband, and multi-carrier systems). The authors also review CMOS data converter architectures and discuss their suitability for communications. The rest of the book is dedicated to high-performance CMOS data converter architecture and circuit design. Pipelined ADCs, parallel ADCs with an improved passive sampling technique, and oversampling ADCs are the focus for ADC architectures, while current-steering DAC modeling and implementation are the focus for DAC architectures. The principles of the switched-current and the switched-capacitor techniques are reviewed and their applications to crucial functional blocks such as multiplying DACs and integrators are detailed. The book outlines the design of the basic building blocks such as operational amplifiers, comparators, and reference generators with emphasis on the practical aspects. To operate analog circuits at a reduced supply voltage, special circuit techniques are needed. Low-voltage techniques are also discussed in this book. CMOS Data Converters for Communications can be used as a reference book by analog circuit designers to understand the data converter requirements for communication applications. It can also be used by telecommunication system designers to understand the difficulties of certain performance requirements on data converters. It is also an excellent resource to prepare analog students for the new challenges ahead.

Adaptive Techniques for Dynamic Processor Optimization Praise for the First Edition . . . "A unique piece of work, a book for electronics engineering, in general, but well suited and excellently applicable also to biomedical engineering . . . I recommend it with no reservation, congratulating the authors for the job performed." -IEEE Engineering in Medicine & Biology "Describes a broad range of sensors in practical use and some circuit designs; copious information about electronic components is supplied, a matter of great value to electronic engineers. A large number of applications are supplied for each type of sensor described . . . This volume is of considerable importance." -Robotica In this new edition of their successful book, renowned authorities Ramon Pallàs-Areny and John Webster bring you up to speed on the latest advances in sensor technology, addressing both the explosive growth in the use of microsensors and improvements made in classical macrosensors. They continue to offer the only combined treatment for both sensors and the signal-conditioning circuits associated with them, following the discussion of a given sensor and its applications with signal-conditioning methods for this type of sensor. New and expanded coverage includes: * New sections on sensor materials and microsensor technology * Basic measurement methods and primary sensors for common physical quantities * A wide range of new sensors, from magnetoresistive sensors and SQUIDs to biosensors * The widely used velocity sensors, fiber-optic sensors, and chemical sensors * Variable CMOS oscillators and other digital and intelligent sensors * 68 worked-out examples and 103 end-of-chapter problems with annotated solutions

CMOS Time-Mode Circuits and Systems Natural computing brings together nature and computing to develop new computational tools for problem solving; to synthesize natural patterns and behaviors in computers; and to potentially design novel types of computers. Fundamentals of Natural Computing: Basic Concepts, Algorithms, and Applications presents a wide-ranging survey of novel techniques and important applications of nature-based computing. This book presents theoretical and philosophical discussions, pseudocodes for algorithms, and computing paradigms that illustrate how computational techniques can be used to solve complex problems, simulate nature, explain natural phenomena, and possibly allow the development of new computing technologies. The author features a consistent and approachable, textbook-style format that includes lucid figures, tables, real-world examples, and different types of exercises that complement the concepts while encouraging readers to apply the computational tools in each chapter. Building progressively upon core concepts of nature-inspired techniques, the topics include evolutionary computing, neurocomputing, swarm intelligence, immunocomputing, fractal geometry, artificial life, quantum computing, and DNA computing. Fundamentals of Natural Computing is a self-contained introduction and a practical guide to nature-based computational approaches that will find numerous applications in a variety of growing fields including engineering, computer science, biological modeling, and bioinformatics.

Official Gazette of the United States Patent and Trademark Office Fully-depleted SOI CMOS Circuits and
Temperature And Supply Voltage Independent Time References For Wireless Sensor Networks Analog Circuits And Signal Processing

Technology for Ultralow-Power Applications addresses the problem of reducing the supply voltage of conventional circuits for ultralow-power operation and explains power-efficient MTCMOS circuit design for FD-SOI devices at a supply voltage of 0.5 V. The topics include the minimum required knowledge of the fabrication of SOI substrates; FD-SOI devices and the latest developments in device and process technologies; and ultralow-voltage circuits, such as digital circuits, analog/RF circuits, and DC-DC converters. Each ultra-low-power technique related to devices and circuits is fully explained using figures to help understanding.

VLSI Design and Test This invaluable second volume of a two-volume set is filled with details about the integrated circuit design for space applications. Various considerations for the selection and application of electronic components for designing spacecraft are discussed. The basic constructions of submicron transistors and schottky diodes during the technological process of production are explored. This book provides details on the energy consumption minimization methods for microelectronic devices. Specific topics include: Features and physical mechanisms of the effect of space radiation on all the main classes of microcircuits, including peculiarities of radiation impact on submicron integrated circuits; Special design, technology, and schematic methods of increasing the resistance to various types of space radiation; Recommendations for choosing research equipment and methods for irradiating various samples; Microcircuit designers on the composition of test elements for the study of the effect of radiation; Microprocessors, circuit boards, logic microcircuits, digital, analog, digital–analogue microcircuits manufactured in various technologies (bipolar, CMOS, BiCMOS, SOI); Problems involved in designing high speed microelectronic devices and systems based on SOI- and SOI-structures; System-on-chip and system-in-package and methods for rejection of silicon microcircuits with hidden defects during mass production.

Technological Innovation for Smart Systems This book covers the fundamental knowledge of layout design from the ground up, addressing both physical design, as generally applied to digital circuits, and analog layout. Such knowledge provides the critical awareness and insights a layout designer must possess to convert a structural description produced during circuit design into the physical layout used for IC/PCB fabrication. The book introduces the technological know-how to transform silicon into functional devices, to understand the technology for which a layout is targeted (Chap. 2). Using this core technology knowledge as the foundation, subsequent chapters delve deeper into specific constraints and aspects of physical design, such as interfaces, design rules and libraries (Chap. 3), design flows and models (Chap. 4), design steps (Chap. 5), analog design specifics (Chap. 6), and finally reliability measures (Chap. 7). Besides serving as a textbook for engineering students, this book is a foundational reference for today’s circuit designers.

CMOS Data Converters for Communications We are excited to present the third edition of Linear Integrated Circuits by renowned authors. The revised edition continues with its essence of dealing with ICs in detail including, theoretical, analytical and application aspects. The learning outcomes-based style of content delivery provides the undergraduate engineering students a thorough understanding of the concepts and induces further exploration into the topics. The book will be a useful reference to GATE, UPSC and other competitive examinations aspirants.

Voltage-to-Frequency Converters Biopotential Readout Circuits for Portable Acquisition Systems describes one of the main building blocks of such miniaturized biomedical signal acquisition systems. The focus of this book is on the implementation of low-power and high-performance integrated circuit
building blocks that can be used to extract biopotential signals from conventional biopotential electrodes. New instrumentation amplifier architectures are introduced and their design is described in detail. These amplifiers are used to implement complete acquisition demonstrator systems that are a stepping stone towards practical miniaturized and low-power systems.

CMOS The book presents design methods for analog integrated circuits with improved electrical performance. It describes different equivalent transistor models, design methods, and fabrication considerations for high-density integrated circuits in nanometer CMOS processes, and it analyzes circuit architectures that are suitable for analog building blocks. Highlighting various design challenges, the text offers a complete understanding of architectural- and transistor-level design issues of analog integrated circuits. It examines important trends in the design of high-speed and power-efficient front-end analog circuits that can be used for signal conditioning, filtering, and detection applications. Offers a comprehensive resource for mastering the analysis of analog integrated circuits. Describes circuit-level details of high-speed and power-efficient analog building blocks. Explores design methods based on various MOS transistor models (MOSFET, FinFET). Provides mathematical derivations of all equations and formulas. Emphasizes practical aspects relevant to integrated circuit implementation. Includes open-ended circuit design case studies.

Superior-Order Curvature-Correction Techniques for Voltage References

Fundamentals of Layout Design for Electronic Circuits This book covers modern analog components, their characteristics, and interactions with process parameters. It serves as a comprehensive guide, addressing both the theoretical and practical aspects of modern silicon devices and the relationship between their electrical properties and processing conditions. Based on the authors’ extensive experience in the development of analog devices, this book is intended for engineers and scientists in semiconductor research, development and manufacturing. The problems at the end of each chapter and the numerous charts, figures and tables also make it appropriate for use as a text in graduate and advanced undergraduate courses in electrical engineering and materials science. Enables engineers to understand analog device physics, and discusses important relations between process integration, device design, component characteristics, and reliability; Describes in step-by-step fashion the components that are used in analog designs, the particular characteristics of analog components, while comparing them to digital applications; Explains the second-order effects in analog devices, and trade-offs between these effects when designing components and developing an integrated process for their manufacturing.

Radiation Tolerant Electronics This book provides a comprehensive treatment of CMOS circuits for passive wireless microsystems. Major topics include: an overview of passive wireless microsystems, design challenges of passive wireless microsystems, fundamental issues of ultra-low power wireless communications, radio-frequency power harvesting, ultra-low power modulators and demodulators, ultra-low power temperature-compensated current and voltage references, clock generation and remote calibration, and advanced design techniques for ultra low-power analog signal processing.

Low-Power High-Resolution Analog to Digital Converters

Implantable Medical Electronics Voltage references represent important VLSI structures, having multiple applications in analog and mixed-signal circuits: measurement equipment, voltage references, temperature sensors, data acquisition systems, memories, or AD and DA converters. Operating as a subcircuit in a complex system, an important requirement for this class of circuits is represented by the possibility of implementation in the existing technology, using the available active and passive devices. The most important performances of a voltage reference circuit are represented by temperature behavior, power supply rejection ratio, transient response and, for the latest designs, by low-power low-voltage operation. Depending on the load requirements, the output of the circuit can be regulated or unregulated. In order to reduce the sensitivity of the reference voltage with respect to the supply voltage variations, modified cascode structures can be implemented, a trade-off between line regulation and low-voltage operation being necessary in this case. A large bandwidth of the voltage reference improves the transient behavior of the circuit, implying also a good noise rejection. Referring to the possibilities of implementing a voltage reference circuit, two different approaches could be identified: voltage-mode and current-mode topologies, being also possible to design a mixed-mode voltage reference.

A Sub 1 V Bandgap Reference Circuit This book is a comprehensive, interdisciplinary resource for the...
latest information on implantable medical devices, and is intended for graduate students studying electrical engineering, electronic instrumentation, and biomedical engineering. It is also appropriate for academic researchers, professional engineers, practicing doctors, and paramedical staff. Divided into two sections on Basic Concepts and Principles, and Applications, the first section provides an all-embracing perspective of the electronics background necessary for this work. The second section deals with pacing techniques used for the heart, brain, spinal cord, and the network of nerves that interlink the brain and spinal cord with the major organs, including ear and eye prostheses. The four main offshoots of implantable electronics, which this book discusses, are: The insertion of an implantable neural amplifier for accurate recording of neural signals for neuroengineering studies The use of implantable pulse generators for pacing the activities of diseased organs The use of implantable sensors for observing the influence of therapy and monitoring a patient’s biological parameters The use of drug delivery systems to supervise the supply of accurate doses of medicine to affected parts Readers will also find chapters on the essentials of clocking and timing circuits, pulse generator circuits, neural amplifiers, batteries, biomaterials and biocompatibility, and more. Unique to this book is also a chapter on cyber security and confidentiality concerns with implants. End-of-chapter questions and exercises help readers apply the content to practical use, making this an ideal book for anyone wishing to learn more about implantable devices.

Gallium Nitride and Silicon Carbide Power Technologies "This thesis proposes a novel technique for a low supply voltage temperature-independent reference voltage. With the scaling of supply voltages, the threshold voltages don't scale proportionally and thus low supply reference circuits have replaced the conventional bandgap reference circuit. The first chapter of this work discusses the conventional bandgap references (the Widlar and Brokaw references). The terminology used in the bandgap world is introduced here. The second chapter investigates the existing low supply voltage reference circuits with their advantages and the limitations. A table discussing all the investigated circuits is provided towards the end of the chapter as a summary. Chapter Three proposes a novel technique to generate a temperature-independent voltage which does not use an operational amplifier. This chapter also provides a mathematical understanding for behavior of the circuit. Chapter Four talks about two variations of the proposed architecture. These variations are designed in order to improve the performance of the proposed circuit against power supply variations. Each one of them has its own merits and drawbacks. Finally Chapter Five discusses the effects of process variations and transient response of the proposed circuit. A digital trimming scheme using an EE-PROM is proposed to manage almost all of the process variation effects on the circuit"--Abstract.

Basic Electronics and Devices

Extending Moore's Law through Advanced Semiconductor Design and Processing Techniques

CMOS Circuits for Passive Wireless Microsystems Since scaling of CMOS is reaching the nanometer area serious limitations enforce the introduction of novel materials, device architectures and device concepts. Multi-gate devices employing high-k gate dielectrics are considered as promising solution overcoming these scaling limitations of conventional planar bulk CMOS. Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies provides a technology oriented assessment of analog and mixed-signal circuits in emerging high-k and multi-gate CMOS technologies.

Amplifiers, Comparators, Multipliers, Filters, and Oscillators This book develops voltage-to-frequency converter (VFC) solutions integrated in standard CMOS technology to be used as a part of a microcontroller-based, multsensor interface in the environment of portable applications, particularly within a WSN node. Coverage includes the total design flow of monolithic VFCs, according to the target application, as well as the analysis, design and implementation of the main VFC blocks, revealing the main challenges and solutions encountered during the design of such high performance cells. Four complete VFCs, each temperature compensated, are fully designed and evaluated: a programmable VFC that includes an offset frequency and a sleep/mode enable terminal; a low power rail-to-rail VFC; and two rail-to-rail differential VFCs.

Electronics and Microprocessors This book constitutes the refereed proceedings of the 8th IFIP WG 5.5/SOCOLNET Advanced Doctoral Conference on Computing, Electrical and Industrial Systems, DoCEIS 2017, held in Costa de Caparica, Portugal, in May 2017. The 46 revised full papers were carefully reviewed and selected from 95 submissions. The papers present selected results produced in engineering doctoral programs and focus on technological innovation for smart systems. Research results and ongoing work
are presented, illustrated and discussed in the following areas: collaborative networks, computational intelligence, systems analysis, smart manufacturing systems, smart sensorial systems, embedded and real time systems, energy: management, energy: optimization, distributed infrastructure, solar energy, electrical machines, power electronics, and electronics.

CMOS Analog Integrated Circuits

Variation Aware Analog and Mixed-Signal Circuit Design in Emerging Multi-Gate CMOS Technologies This book explores energy efficiency techniques for high-performance computing (HPC) systems using power-management methods. Adopting a step-by-step approach, it describes power-management flows, algorithms and mechanism that are employed in modern processors such as Intel Sandy Bridge, Haswell, Skylake and other architectures (e.g. ARM). Further, it includes practical examples and recent studies demonstrating how modern processors dynamically manage wide power ranges, from a few milliwatts in the lowest idle power state, to tens of watts in turbo state. Moreover, the book explains how thermal and power deliveries are managed in the context this huge power range. The book also discusses the different metrics for energy efficiency, presents several methods and applications of the power and energy estimation, and shows how by using innovative power estimation methods and new algorithms modern processors are able to optimize metrics such as power, energy, and performance. Different power estimation tools are presented, including tools that break down the power consumption of modern processors at sub-processor core/thread granularity. The book also investigates software, firmware and hardware coordination methods of reducing power consumption, for example a compiler-assisted power management method to overcome power excursions. Lastly, it examines firmware algorithms for dynamic cache resizing and dynamic voltage and frequency scaling (DVFS) for memory sub-systems.

Linear Integrated Circuits, 3e MicroCMOS Design covers key analog design methodologies with an emphasis on analog systems that can be integrated into systems-on-chip (SoCs). Starting at the transistor level, this book introduces basic concepts in the design of system-level complementary metal-oxide semiconductors (CMOS). It uses practical examples to illustrate circuit construction so that readers can develop an intuitive understanding rather than just assimilate the usual conventional analytical knowledge. As SoCs become increasingly complex, analog/radio frequency (RF) system designers have to master both system- and transistor-level design aspects. They must understand abstract concepts associated with large components, such as analog-to-digital converters (ADCs) and phase-locked loops (PLLs). To help readers along, this book discusses topics including: Amplifier basics & design Operational amplifier (Opamp) Data converter basics Nyquist-rate data converters Oversampling data converters High-resolution data converters PLL basics Frequency synthesis and clock recovery Focused more on design than analysis, this reference avoids lengthy equations and instead helps readers acquire a more hands-on mastery of the subject based on the application of core design concepts. Offering the needed perspective on the various design techniques for data converter and PLL design, coverage starts with abstract concepts—including discussion of bipolar junction transistors (BJTs) and MOS transistors—and builds up to an examination of the larger systems derived from microCMOS design.

Official Gazette of the United States Patent and Trademark Office Research on radiation-tolerant electronics has increased rapidly over the past few years, resulting in many interesting approaches to modeling radiation effects and designing radiation-hardened integrated circuits and embedded systems. This research is strongly driven by the growing need for radiation-hardened electronics for space applications, high-energy physics experiments such as those on the Large Hadron Collider at CERN, and many terrestrial nuclear applications including nuclear energy and nuclear safety. With the progressive scaling of integrated circuit technologies and the growing complexity of electronic systems, their susceptibility to ionizing radiation has raised many exciting challenges, which are expected to drive research in the coming decade. In this book we highlight recent breakthroughs in the study of radiation effects in advanced semiconductor devices, as well as in high-performance analog, mixed signal, RF, and digital integrated circuits. We also focus on advances in embedded radiation hardening in both FPGA and microcontroller systems and apply radiation-hardened embedded systems for cryptography and image processing, targeting space applications.

Fundamentals of Natural Computing This book tackles challenges for the design of analog integrated circuits that operate from ultra-low power supply voltages (down to 0.5V). Coverage demonstrates the signal processing circuit and circuit biasing approaches through the design of operational transconductance amplifiers (OTAs). These amplifiers are then used to build analog system functions including continuous time filter and a sample and hold amplifier.
References For Wireless Sensor Networks Analog Circuits And Signal Processing

VLSI Reference Circuits - Theory, Design, and Applications

Space Microelectronics Volume 2: Integrated Circuit Design for Space Applications

A revised guide to the theory and implementation of CMOS analog and digital IC design. The fourth edition of CMOS: Circuit Design, Layout, and Simulation is an updated guide to the practical design of both analog and digital integrated circuits. The author—a noted expert on the topic—offers a contemporary review of a wide range of analog/digital circuit blocks including: phase-locked-loops, delta-sigma sensing circuits, voltage/current references, op-amps, the design of data converters, and switching power supplies. CMOS includes discussions that detail the trade-offs and considerations when designing at the transistor-level. The companion website contains numerous examples for many computer-aided design (CAD) tools. Using the website enables readers to recreate, modify, or simulate the design examples presented throughout the book. In addition, the author includes hundreds of end-of-chapter problems to enhance understanding of the content presented. This newly revised edition: • Provides in-depth coverage of both analog and digital transistor-level design techniques • Discusses the design of phase- and delay-locked loops, mixed-signal circuits, data converters, and circuit noise • Explores real-world process parameters, design rules, and layout examples • Contains a new chapter on Power Electronics Written for students in electrical and computer engineering and professionals in the field, the fourth edition of CMOS: Circuit Design, Layout, and Simulation is a practical guide to understanding analog and digital transistor-level design theory and techniques.

Energy Efficient High Performance Processors

Time-mode circuits, where information is represented by time difference between digital events, offer a viable and technology-friendly means to realize mixed-mode circuits and systems in nanometer complementary metal-oxide semiconductor (CMOS) technologies. Various architectures of time-based signal processing and design techniques of CMOS time-mode circuits have emerged; however, an in-depth examination of the principles of time-based signal processing and design techniques of time-mode circuits has not been available—until now. CMOS Time-Mode Circuits and Systems: Fundamentals and Applications is the first book to deliver a comprehensive treatment of CMOS time-mode circuits and systems. Featuring contributions from leading experts, this authoritative text contains a rich collection of literature on time-mode circuits and systems. The book begins by presenting a critical comparison of voltage-mode, current-mode, and time-mode signaling for mixed-mode signal processing and then: Covers the fundamentals of time-mode signal processing, such as voltage-to-time converters, all-digital phase-locked loops, and frequency synthesizers Investigates the performance characteristics, architecture, design techniques, and implementation of time-to-digital converters Discusses time-mode delta-sigma-based analog-to-digital converters, placing a great emphasis on time-mode quantizers Includes a detailed study of ultra-low-power integrated time-mode temperature measurement systems CMOS Time-Mode Circuits and Systems: Fundamentals and Applications provides a valuable reference for circuit design engineers, hardware system engineers, graduate students, and others seeking to master this fast-evolving field.

Copyright code: aad278e7940684e90c8a3e41a7634392